Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae).
نویسندگان
چکیده
The presence of an endogenous circadian clock in the brain of an animal was first demonstrated in the cockroach Leucophaea maderae. However, the clock's cellular basis remained elusive until pigment-dispersing hormone-immunoreactive neurons, which express the clock genes period and timeless in Drosophila, were proposed as pacemaker candidates. In several insect species, pigment-dispersing hormone-immunoreactive neurons are closely associated with the accessory medulla, a small neuropil in the optic lobe, which was suggested to be a circadian clock neuropil. Here, we demonstrate that ectopic transplantation of adult accessory medulla into optic lobe-less cockroaches restores circadian locomotor activity rhythms in L. maderae. All histologically examined cockroaches that regained circadian activity regenerated pigment-dispersing hormone-immunoreactive fibres from the grafts to original targets in the protocerebrum. The data show that the accessory medulla is the circadian pacemaker controlling locomotor activity rhythms in the cockroach. Whether pigment-dispersing hormone-immunoreactive neurons are the only circadian pacemaker cells controlling locomotor activity rhythms remains to be examined.
منابع مشابه
Neural organization of the circadian system of the cockroach Leucophaea maderae.
The cockroach Leucophaea maderae was the first animal in which lesion experiments localized an endogenous circadian clock to a particular brain area, the optic lobe. The neural organization of the circadian system, however, including entrainment pathways, coupling elements of the bilaterally distributed internal clock, and output pathways controlling circadian locomotor rhythms are only recentl...
متن کاملPhotoperiod-dependent plasticity of circadian pacemaker center in the brain of the Madeira cockroach Rhyparobia maderae
The cockroach Leucophaea maderae is an established model in circadian rhythm research. Its circadian clock is located in the accessory medulla of the brain. Pigment-dispersing factor-immunoreactive (PDF-ir) neurons of the accessory medulla act as circadian pacemakers controlling locomotor activity rhythms. To characterize the neuronal network of the circadian system in L. maderae, the PDF-ir ne...
متن کاملEvidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae.
Accumulating evidence suggests that the accessory medulla is the location of the circadian pacemaker in the fruit fly Drosophila melanogaster and the cockroach Leucophaea maderae. gamma-Aminobutyric acid (GABA) and Mas-allatotropin are two putative neurotransmitters, in the accessory medulla in the cockroach Leucophaea maderae. Neurons immunoreactive to the neuropeptide Mas-allatotropin are loc...
متن کاملPigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae.
Pigment-dispersing factor-immunoreactive circadian pacemaker cells, which arborize in the accessory medulla, control circadian locomotor activity rhythms in Drosophila as well as in the cockroach Leucophaea maderae via unknown mechanisms. Here, we show that circadian pacemaker candidates of the accessory medulla of the cockroach produce regular interspike intervals. Therefore, the membrane pote...
متن کاملEvidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae.
The accessory medulla (AMe), a small neuropil in the optic lobe, houses the master circadian clock in the brain of the cockroach Leucophaea maderae and controls circadian rhythms in locomotor activity. Recently, members of the orcokinin family of crustacean neuropeptides were identified in a cockroach and a locust and were shown by immunocytochemistry to be prominently present in the AMe. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 206 Pt 11 شماره
صفحات -
تاریخ انتشار 2003